Preparation and Structure of Fully Caesium Exchanged Zeolite A and of the Linear $(Cs_4)^{3+}$ Cation

Nam-Ho Heo and Karl Seff*

Chemistry Department, University of Hawaii, Honolulu, Hawaii 96822-2275, U.S.A.

Fully dehydrated, fully Cs⁺-exchanged zeolite A has been prepared by reducing the Na⁺ ions in dehydrated zeolite 4A with caesium vapour at 623 K, to give Cs₁₂–A·1/2Cs which contains (Cs₄)³⁺, followed by baking the occluded caesium atoms out at 1273 K to give Cs₁₂–A; both structures were determined by single crystal X-ray diffraction methods.

A series of attempts spanning a decade to prepare fully Cs⁺-exchanged zeolite A have led to gradual increases in the maximum extent of exchange, from 7/12 to $11/12.1^{-3}$ Fully dehydrated, fully Cs⁺-exchanged zeolite A would be a remarkably ionically crowded material. It is to avoid this crowding, presumably, that the zeolite does not easily accept twelve large Cs⁺ ions per 12.3 Å unit cell as the result of conventional ion-exchange procedures.^{2,3} This most ionically crowded zeolite, Cs₁₂–A, has now been synthesized by utilizing the difference in reduction potential between Na and Cs, together with excess caesium vapour, as driving forces for complete Cs⁺ exchange.

The reaction between a single crystal of dehydrated Na₁₂-A and 0.1 Torr of caesium vapour went to completion at 623 K to give Cs₁₂-A·1/2Cs. Even after evacuation at 723 K for 4 days to remove all metal from its surface, the product crystal remained black. Attempts to bake the extra caesium atoms of Cs₁₂-A·1/2Cs out at 923 or 1123 K produced crystals which were colourless and transparent on the outside but black within.⁴ A colourless crystal of Cs₁₂-A was obtained, however, by heating *in vacuo* at 1273 K. The structures of Cs₁₂-A·1/2Cs and Cs₁₂-A have been determined by single crystal X-ray diffraction methods with relatively large data sets in the cubic space group *Pm3m*. Refinements in *Fm3c* yielded no additional insights.[†]

In each crystal structure, Cs⁺ ions are distributed over four crystallographically distinct sites. They are found on fourfold axes at the centres of 8-rings as seen previously,^{2,3} on threefold axes both on the sodalite- and large-cavity sides of 6-rings,^{2,3}

Table 1	ι.	Distribution	of	Cs+	ions	in	fully (Cs^+	-exchanged	zeolite	Α.
---------	----	--------------	----	-----	------	----	---------	--------	------------	---------	----

Crystal	In	No. of Opposit	Cs+ ions e 6-rings	Opposite		
(components)	8-rings	α-cage	β-cage	4-rings	Total	
Cs ₁₂ -A	3	$6 + 1^{a}$	$1 + 1^{a}$	0	12	
Cs_{12} -A·1/2Cs	3	7	2	0.5	12.5	
$(Cs_{12}-A)$	3	6	2	1	12	
$(Cs_{13}-A)$	3	8	2	0	13	

^a One 6-ring is occupied on both sides by Cs^+ ions. These two ions have refined to positions somewhat different from those of the remaining 6-ring Cs^+ ions.

† Crystal data: Cs₁₂-A [Cs₁₂-A·1/2 Cs]: each cubic, space group Pm3m, a = 12.258 [12.279] Å; Syntex diffractometer, Mo radiation ($K_{\alpha 1}$, $\lambda = 0.70930$; $K_{\alpha 2}$, $\lambda = 0.71359$ Å), θ -2 θ scan; 205 [360] reflections with $I > 3\sigma(I)$; absorption corrections judged unnecessary; full-matrix least-squares refinement; anisotropic thermal parameters; R = 0.073 [0.053], $R_w = 0.079$ [0.041].

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the University of Bonn. See Notice to Authors, Issue No. 1. and finally on twofold axes opposite 4-rings in the large cavity³ (see Table 1).

In Cs₁₂-A, three Cs⁺ ions per unit cell lie at the centres of 8-rings. Two Cs⁺ ions, 4.04 Å apart, lie on a single threefold axis within each sodalite cavity. One of these Cs⁺ ions shares its 6-ring with a large-cavity Cs⁺ ion, and the remaining six 6-rings are occupied only by such large-cavity Cs⁺ ions. A large-cavity view of Cs₁₂-A is shown in Figure 1.

 Cs_{12} -A·1/2Cs may be viewed as an equimolar mixture of Cs_{12} -A and Cs_{13} -A. Together with three Cs^+ ions at the centres of 8-rings and six in the large cavity, this Cs_{12} -A unit cell contains two Cs^+ ions in each sodalite unit and one Cs^+ ion opposite a 4-ring in the large cavity, this 4-ring being the one between the two 6-rings occupied by sodalite Cs^+ ions. Cs_{13} -A differs by having eight Cs^+ ions opposite 6-rings in the large cavity with no Cs^+ ion opposite a 4-ring. The short intercaesium distances of 3.98(2) Å within the sodalite unit and 3.87(1) Å through two opposite 6-rings indicate that the extra caesium atom in the Cs_{13} -A unit cell has added to form a linear cationic cluster $(Cs_4)^{3+}$, unlike the tetrahedral clusters of $(Na_4)^{3+}$ and $(K_4)^{3+}$ observed in zeolite Y by e.s.r.

Figure 1. A large-cavity view of Cs_{12} -A. The zeolite A framework is drawn with heavy bonds between tetrahedrally co-ordinated (Si, Al) and oxygen atoms. Cs⁺ ion co-ordination by framework oxygens is indicated by fine lines. Three Cs⁺ ions are located at the centres of 8-rings at Cs(1), seven are in the large cavity (α -cage) at Cs(2) and Cs(4), and two are in the sodalite unit (β -cage) at Cs(3) and Cs(5). Two Cs⁺ ions at Cs(4) and Cs(5) share a unique 6-ring. Ellipsoids of 20% probability are shown.

spectroscopy.⁵ (Cs₄)³⁺ appears to be stable even in vacuo at 1123 K.4

The excess electrons in Cs_{12} -A·1/2Cs might have formed a metallic continuum of electron density encompassing the entire single crystal; a three-dimensional array of Cs+ ions with intercaesium distances comparable to those in caesium metal exists.⁶ However, a test for metallic character using a metal detector on an evacuated macroscopic sample was negative.

Cs₁₂-A showed little indication of crystal damage after preparation at 1273 K, and therefore has remarkable thermal stability. Na₁₂-A, K₁₂-A, and Ca_{5.8}-A decompose in air at about 1025, 1100, and 1100 K, respectively.⁷ Cs₁₂-A has a relatively relaxed framework, like that of hydrated Na₁₂-A and very unlike those of dehydrated K₁₂-A and Rb₁₁Ba_{0.5}-A.⁸ This may be partly responsible for its high thermal stability.

Received, 29th April 1987; Com. 581

References

- 1 R. M. Breck, 'Zeolite Molecular Sieves: Structure, Chemistry, and Use,' Wiley, New York, 1974, pp. 537-541.
- 2 T. B. Vance and K. Seff, J. Phys. Chem., 1975, 79, 2163; R. L. Firor and K. Seff, J. Am. Chem. Soc., 1977, 99, 6249; V. Subramanian and K. Seff, J. Phys. Chem., 1979, 83, 2166; Y. Kim and K. Seff, Bull. Korean Chem. Soc., 1983, 5, 117
- 3 C. Dejsupa, M.S. Thesis, University of Hawaii, 1986. 4 N. H. Heo, Ph.D. Thesis, University of Hawaii, 1987.
- 5 J. A. Rabo and P. H. Kasai, Prog. Solid State Chem., 1975, 9, 1; P. P. Edwards, M. R. Harrison, J. Klinowski, S. Ramdas, J. M. Thomas, D. C. Johnson, and C. J. Page, J. Chem. Soc., Chem. Commun., 1984, 982.
- 6 'Interatomic Distances, Supplement,' The Chemical Society, London, 1965, p. S-5s.
- 7 See ref. 1, p. 495.
- 8 V. Gramlich and W. M. Meier, Z. Kristallogr., 1971, 133, 134; J. J. Pluth and J. V. Smith, J. Phys. Chem., 1979, 83, 741; J. Am. Chem. Soc., 1983, 105, 2621.