Preparation and Structure of Fully Caesium Exchanged Zeolite A and of the Linear (Cs4)3+ Cation

Nam-Ho Heo and Karl Seff"

Chemistry Department, University of Hawaii, Honolulu, Hawaii 96822-2275, U.S.A.

Fully dehydrated, fully Cs+-exchanged zeolite **A** has been prepared by reducing the Na+ ions in dehydrated zeolite 4A with caesium vapour at 623 K, to give Cs₁₂-A-1/2Cs which contains (Cs₄)³⁺, followed by baking the occluded caesium atoms out at 1273 K to give Cs₁₂-A; both structures were determined by single crystal X-ray diffraction methods.

A series of attempts spanning a decade to prepare fully Cs+-exchanged zeolite A have led to gradual increases in the maximum extent of exchange, from $7/12$ to $11/12$.¹⁻³ Fully dehydrated, fully Cs+-exchanged zeolite A would be a remarkably ionically crowded material. It is to avoid this crowding, presumably, that the zeolite does not easily accept twelve large Cs^+ ions per 12.3 Å unit cell as the result of conventional ion-exchange procedures.2.3 This most ionically crowded zeolite, $Cs_{12}-A$, has now been synthesized by utilizing the difference in reduction potential between Na and Cs, together with excess caesium vapour, as driving forces for complete Cs+ exchange.

The reaction between a single crystal of dehydrated $Na_{12}-A$ and 0.1 Torr of caesium vapour went to completion at 623 K to give $Cs_{12}-A.1/2Cs$. Even after evacuation at 723 K for 4 days to remove all metal from its surface, the product crystal remained black. Attempts to bake the extra caesium atoms of Cs_{12} -A.1/2Cs out at 923 or 1123 K produced crystals which were colourless and transparent on the outside but black within.⁴ A colourless crystal of $Cs_{12}-A$ was obtained, however, by heating *in vacuo* at 1273 K. The structures of $Cs_{12}-A.1/2Cs$ and $Cs_{12}-A$ have been determined by single crystal X-ray diffraction methods with relatively large data sets in the cubic space group *Pm3m*. Refinements in *Fm3c* yielded no additional insights.[†]

In each crystal structure, $Cs⁺$ ions are distributed over four crystallographically distinct sites. They are found on fourfold axes at the centres of 8-rings as seen previously,2.3 on threefold axes both on the sodalite- and large-cavity sides of 6-rings, 2.3

 a One 6-ring is occupied on both sides by $Cs⁺$ ions. These two ions have refined to positions somewhat different from those of the remaining 6-ring **Cs+** ions.

† Crystal data: $Cs_{12}-A$ [Cs₁₂-A-1/2 Cs]: each cubic, space group *Pm3m,* $a = 12.258$ [12.279] Å; Syntex diffractometer, Mo radiation $(K_{\alpha1}, \lambda = 0.70930; K_{\alpha2}, \lambda = 0.71359 \text{ Å}), \theta - 2\theta \text{ scan}; 205 [360]$ reflections with $I > 3\sigma(I)$; absorption corrections judged unnecessary; full-matrix least-squares refinement; anisotropic thermal parameters; $R = 0.073$ [0.053], $R_w = 0.079$ [0.041].

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the University of Bonn. See Notice to Authors, Issue No. 1.

and finally on twofold axes opposite 4-rings in the large cavity3 (see Table 1).

In $Cs_{12}-A$, three Cs^{+} ions per unit cell lie at the centres axis within each sodalite cavity. One of these $Cs⁺$ ions shares its 6-ring with a large-cavity $Cs⁺$ ion, and the remaining six 6-rings are occupied only by such large-cavity $Cs⁺$ ions. A large-cavity view of $Cs_{12}-A$ is shown in Figure 1. of 8-rings. Two Cs^+ ions, 4.04 Å apart, lie on a single threefold

 $Cs_{12}-A.1/2Cs$ may be viewed as an equimolar mixture of $Cs_{12}-A$ and $Cs_{13}-A$. Together with three Cs⁺ ions at the centres of 8-rings and six in the large cavity, this $Cs_{12}-A$ unit cell contains two Cs+ ions in each sodalite unit and one Cs+ ion opposite a 4-ring in the large cavity, this 4-ring being the one between the two 6-rings occupied by sodalite Cs+ ions. $Cs_{13}-A$ differs by having eight $Cs⁺$ ions opposite 6-rings in the large cavity with no $\bar{C}s$ ⁺ ion opposite a 4-ring. The short intercaesium distances of 3.98(2) Å within the sodalite unit and 3.87(1) **8,** through two opposite 6-rings indicate that the extra caesium atom in the Cs_{13} -A unit cell has added to form a linear cationic cluster $(Cs_4)^{3+}$, unlike the tetrahedral clusters of $(Na_4)^{3+}$ and $(K_4)^{3+}$ observed in zeolite Y by e.s.r.

Figure 1. A large-cavity view of $Cs_{12}-A$. The zeolite A framework is drawn with heavy bonds between tetrahedrally co-ordinated (Si, Al) and oxygen atoms. Cs^+ ion co-ordination by framework oxygens is indicated by fine lines. Three Cs+ ions are located at the centres of 8-rings at Cs(1), seven are in the large cavity (α -cage) at Cs(2) and Cs(4), and two are in the sodalite unit (β -cage) at $\overline{Cs(3)}$ and $\overline{Cs(5)}$. Two $Cs⁺$ ions at $Cs(4)$ and $Cs(5)$ share a unique 6-ring. Ellipsoids of 20% probability are shown.

spectroscopy.⁵ $(Cs₄)³⁺$ appears to be stable even *in vacuo* at 1123 K.4

The excess electrons in $Cs_{12}-A.1/2Cs$ might have formed a metallic continuum of electron density encompassing the entire single crystal; a three-dimensional array of Cs+ ions with intercaesium distances comparable to those in caesium metal exists.6 However, a test for metallic character using a metal detector on an evacuated macroscopic sample was negative.

 $\overline{C}_{S_{12}-}A$ showed little indication of crystal damage after preparation at 1273 K, and therefore has remarkable thermal stability. Na₁₂-A, K₁₂-A, and C_{a_{5,8}-A decompose in air at} about 1025, 1100, and 1100 K, respectively.⁷ Cs₁₂-A has a relatively relaxed framework, like that of hydrated $Na_{12}-A$ and very unlike those of dehydrated $K_{12}-A$ and $Rb_{11}Ba_{0.5}-A.8$ This may be partly responsible for its high thermal stability.

Received, 29th April 1987; Corn. 581

References

- **1** R. M. Breck, 'Zeolite Molecular Sieves: Structure, Chemistry, and Use,' Wiley, New York, **1974,** pp. **537-541.**
- **2** T. **B.** Vance and K. Seff, J. *Phys. Chem.,* **1975,79,2163;** R. L. Firor and K. Seff, J. *Am. Chem. SOC.,* **1977, 99, 6249;** V. Subramanian and K. Seff, J. *Phys. Chem.,* **1979,83, 2166; Y.** Kim and K. Seff, Bull. *Korean Chem. SOC.,* **1983,** *5,* **117.**
- 3 C. Dejsupa, M.S. Thesis, University of Hawaii, **1986.**
- **4** N. H. Heo, Ph.D. Thesis, University of Hawaii, **1987.**
- 5 J. **A.** Rabo and P. H. Kasai, *Prog. Solid State Chem.,* **1975, 9,** 1; P. P. Edwards, M. R. Harrison, J. Klinowski, S. Ramdas, J. M. Thomas, D. C. Johnson, and C. J. Page, J. *Chem. SOC., Chem. Commun.,* **1984,982.**
- 6 'Interatomic Distances, Supplement,' The Chemical Society, London, **1965,** p. **S-5s.**
- **7** See ref. **1,** p. **495.**
- **8** V. Gramlich and W. M. Meier, Z. *Kristallogr.,* **1971,133,134;** J. J. Pluth and J. V. Smith, J. *Phys. Chem.,* **1979,83,741;** *J. Am. Chem. SOC.,* **1983, 105, 2621.**